16 research outputs found

    Molecular Modeling of Bacterial Nanomachineries

    Get PDF
    Proteins have the ability to assemble in multimeric states to perform their specific biological function. Unfortunately, characterizing experimentally these structures at atomistic resolution is usually difficult. For this reason, in silico methodologies aiming at predicting how multiple protein copies arrange to forma multimeric complex would be desirable. We present Parallel OptimizationWorkbench (POW), a swarm intelligence based optimization framework able to deal, in principle, with any optimization problem. We show that POW can be applied to biologically relevant problems such as prediction of protein assemblies and the parameterization of a Coarse-Grained force field for proteins. By combining POW optimizations, Molecular Dynamics simulations, Poisson-Boltzmann calculations and a variety of experiments, we subsequently study two bacterial nanomachieries: Aeromonas hydrophila's pore-forming toxin aerolysin, and Yersinia enterocolitica injectisome. These structures are challenging both for their size, and for the timescales involved in their functioning. Aerolysin is a pore-forming toxin secreted as an hydrophilic monomer. By means of large conformational changes, the protein heptamerizes on the target cell's surface, and finally inserts β-barrel into its lipid bilayer, causing cell death. The main hurdle in the study of this structure is the complexity of the mode of action, which spans timescales currently unreachable by classical molecular dynamics. We show that aerolysin C-terminal region has the dual role of preventing premature oligomerization and helping the folding of tertiary structure, qualifying therefore as an intramolecular chaperone. We study the transmembrane β-barrel properties and compare them with those of the homologous protein α-hemolysin. We show that aerolysin's barrel is more rigid than α-hemolysin's, and should be anion selective. We present models for aerolysin heptamer both in prepore and, for the first time, in membrane-inserted conformation. Our results are validated experimentally, and are consistent with known biochemical and structural data. The injectisome is an example of a type III secretion system. Its most striking feature is probably its size: hundreds of proteins assemble in a unique structure spanning the Gram-negative bacterial double membrane, and protruding outside the cell as a needle for tenth of nanometers. Obtaining an atomistic representation of this massive structure, and therefore some insights about its mode of action, is one of the greatest challenges. We show that the final length of injectisome's needle is determined by the secondary structure content of a ruler protein located inside its cavity during assembly. Using POW, we also produce the first model for Yersinia injectisome's basal body, highlighting the flexibility of this region in adapting between the inner and outer membranes. As a whole, this work demonstrates that a synergy of dry and wet experiments can provide precious insights into macromolecular structure and function

    Outcome of the First wwPDB Hybrid / Integrative Methods Task Force Workshop

    Get PDF
    Structures of biomolecular systems are increasingly computed by integrative modeling that relies on varied types of experimental data and theoretical information. We describe here the proceedings and conclusions from the first wwPDB Hybrid/Integrative Methods Task Force Workshop held at the European Bioinformatics Institute in Hinxton, UK, on October 6 and 7, 2014. At the workshop, experts in various experimental fields of structural biology, experts in integrative modeling and visualization, and experts in data archiving addressed a series of questions central to the future of structural biology. How should integrative models be represented? How should the data and integrative models be validated? What data should be archived? How should the data and models be archived? What information should accompany the publication of integrative models

    Reaction Mechanism and Catalytic Fingerprint of Allantoin Racemase

    No full text
    The stereospecific oxidative decomposition of urate into allantoin is the core of purine catabolism in many organisms. The spontaneous decomposition of upstream intermediates and the nonenzymatic racemization of allantoin lead to an accumulation of (R)-allantoin, because the enzymes converting allantoin into allantoate are specific for the (S) isomer. The enzyme allantoin racemase catalyzes the reversible conversion between the two allantoin enantiomers, thus ensuring the overall efficiency of the catabolic pathway and preventing allantoin accumulation. On the basis of recent crystallographic and biochemical evidence, allantoin racemase has been assigned to the family of cofactor-independent racemases, together with other amino acid racemases. A detailed computational investigation of allantoin racemase has been carried out to complement the available experimental data and to provide atomistic insight into the enzymatic action. Allantoin, the natural substrate of the enzyme, has been investigated at the quantum mechanical level, in order to rationalize its conformational and tautomeric equilibria, playing a key role in protein-ligand recognition and in the following catalytic steps. The reaction mechanism of the enzyme has been elucidated through quantum mechanics/molecular mechanics (QM/MM) calculations. The potential energy surface investigation, carried out at the QM/MM level, revealed a stepwise reaction mechanism. A pair of cysteine residues promotes the stereoinversion of a carbon atom of the ligand without the assistance of cofactors. Electrostatic fingerprint calculations are used to discuss the role of the active site residues in lowering the pK(a) of the substrate. The planar unprotonated intermediate is compared with the enolic allantoin tautomer observed in the active site of the crystallized enzyme. Finally, the enzymatic catalysis featured by allantoin racemase (AllR) is compared with that of other enzymes belonging to the same family

    Reaction Mechanism and Catalytic Fingerprint of Allantoin Racemase

    No full text
    The stereospecific oxidative decomposition of urate into allantoin is the core of purine catabolism in many organisms. The spontaneous decomposition of upstream intermediates and the nonenzymatic racemization of allantoin lead to an accumulation of (<i>R</i>)-allantoin, because the enzymes converting allantoin into allantoate are specific for the (<i>S</i>) isomer. The enzyme allantoin racemase catalyzes the reversible conversion between the two allantoin enantiomers, thus ensuring the overall efficiency of the catabolic pathway and preventing allantoin accumulation. On the basis of recent crystallographic and biochemical evidence, allantoin racemase has been assigned to the family of cofactor-independent racemases, together with other amino acid racemases. A detailed computational investigation of allantoin racemase has been carried out to complement the available experimental data and to provide atomistic insight into the enzymatic action. Allantoin, the natural substrate of the enzyme, has been investigated at the quantum mechanical level, in order to rationalize its conformational and tautomeric equilibria, playing a key role in protein–ligand recognition and in the following catalytic steps. The reaction mechanism of the enzyme has been elucidated through quantum mechanics/molecular mechanics (QM/MM) calculations. The potential energy surface investigation, carried out at the QM/MM level, revealed a stepwise reaction mechanism. A pair of cysteine residues promotes the stereoinversion of a carbon atom of the ligand without the assistance of cofactors. Electrostatic fingerprint calculations are used to discuss the role of the active site residues in lowering the p<i>K</i><sub>a</sub> of the substrate. The planar unprotonated intermediate is compared with the enolic allantoin tautomer observed in the active site of the crystallized enzyme. Finally, the enzymatic catalysis featured by allantoin racemase (AllR) is compared with that of other enzymes belonging to the same family

    Reaction Mechanism and Catalytic Fingerprint of Allantoin Racemase

    No full text
    The stereospecific oxidative decomposition of urate into allantoin is the core of purine catabolism in many organisms. The spontaneous decomposition of upstream intermediates and the nonenzymatic racemization of allantoin lead to an accumulation of (<i>R</i>)-allantoin, because the enzymes converting allantoin into allantoate are specific for the (<i>S</i>) isomer. The enzyme allantoin racemase catalyzes the reversible conversion between the two allantoin enantiomers, thus ensuring the overall efficiency of the catabolic pathway and preventing allantoin accumulation. On the basis of recent crystallographic and biochemical evidence, allantoin racemase has been assigned to the family of cofactor-independent racemases, together with other amino acid racemases. A detailed computational investigation of allantoin racemase has been carried out to complement the available experimental data and to provide atomistic insight into the enzymatic action. Allantoin, the natural substrate of the enzyme, has been investigated at the quantum mechanical level, in order to rationalize its conformational and tautomeric equilibria, playing a key role in protein–ligand recognition and in the following catalytic steps. The reaction mechanism of the enzyme has been elucidated through quantum mechanics/molecular mechanics (QM/MM) calculations. The potential energy surface investigation, carried out at the QM/MM level, revealed a stepwise reaction mechanism. A pair of cysteine residues promotes the stereoinversion of a carbon atom of the ligand without the assistance of cofactors. Electrostatic fingerprint calculations are used to discuss the role of the active site residues in lowering the p<i>K</i><sub>a</sub> of the substrate. The planar unprotonated intermediate is compared with the enolic allantoin tautomer observed in the active site of the crystallized enzyme. Finally, the enzymatic catalysis featured by allantoin racemase (AllR) is compared with that of other enzymes belonging to the same family

    Arranged sevenfold: structural insights into the C-terminal oligomerization domain of human C4b-binding protein.

    Get PDF
    The complement system as a major part of innate immunity is the first line of defense against invading microorganisms. Orchestrated by more than 60 proteins, its major task is to discriminate between host cells and pathogens and to initiate immune response. Additional recognition of necrotic or apoptotic cells demands a fine-tune regulation of this powerful system. C4b-binding protein (C4BP) is the major inhibitor of the classical complement and lectin pathway. The crystal structure of the human C4BP oligomerization domain in its 7α isoform and molecular simulations provide first structural insights of C4BP oligomerization. The heptameric core structure is stabilized by intermolecular disulfide bonds. In addition, thermal shift assays indicate that layers of electrostatic interactions mainly contribute to the extraordinary thermodynamic stability of the complex. These findings make C4BP a promising scaffold for multivalent ligand display with applications in immunology and biological chemistry

    Software for the Analysis and Interpretation of Native Mass Spectrometry Data

    No full text
    The last few years have seen a dramatic increase in applications of native mass and ion mobility spectrometry, especially for the study of proteins and protein complexes. This increase has been catalysed by the availability of commercial instrumentation capable of carrying out such analyses. Like in most fields, however, the software to process the data generated from new instrumentation lags behind. Recently, a number of research groups have started addressing this by developing software, but further improvements are still required in order to realise the full potential of the datasets generated. Here we describe practical aspects as well as challenges in processing native mass spectrometry (MS) and ion mobility-MS datasets, and provide a brief overview of currently available tools. We then set out our vision of future developments that would bring the community together and lead to the development of a common platform to expedite future computational developments, provide standardised processing approaches and serve as a location for the deposition of data for this emerging field.</div

    Computational Strategies and Challenges for Using Native Ion Mobility Mass Spectrometry in Biophysics and Structural Biology

    No full text
    Native mass spectrometry (MS) allows the interrogation of structural aspects of macromolecules in the gas phase, under the premise of having initially maintained their solution-phase non-covalent interactions intact. In the more than 25 years since the first reports, the utility of native MS has become well established in the structural biology community. The experimental and technological advances during this time have been rapid, resulting in dramatic increases in sensitivity, mass range, resolution, and complexity of possible experiments. As experimental methods are improved, there have been accompanying developments in computational approaches for analysing and exploiting the profusion of MS data in a structural and biophysical context. Here, based on discussions within the EU COST Action BM1403 on Native MS and Related Methods for Structural Biology with broad participation from Europe and North America, we consider the computational strategies currently being employed by the community, aspects of best practice, and the challenges that remain to be addressed. </p

    Computational Strategies and Challenges for Using Native Ion Mobility Mass Spectrometry in Biophysics and Structural Biology

    Get PDF
    Native mass spectrometry (MS) allows the interrogation of structural aspects of macromolecules in the gas phase, under the premise of having initially maintained their solution-phase noncovalent interactions intact. In the more than 25 years since the first reports, the utility of native MS has become well established in the structural biology community. The experimental and technological advances during this time have been rapid, resulting in dramatic increases in sensitivity, mass range, resolution, and complexity of possible experiments. As experimental methods have improved, there have been accompanying developments in computational approaches for analyzing and exploiting the profusion of MS data in a structural and biophysical context. In this perspective, we consider the computational strategies currently being employed by the community, aspects of best practice, and the challenges that remain to be addressed. Our perspective is based on discussions within the European Cooperation in Science and Technology Action on Native Mass Spectrometry and Related Methods for Structural Biology (EU COST Action BM1403), which involved participants from across Europe and North America. It is intended not as an in-depth review but instead to provide an accessible introduction to and overview of the topic—to inform newcomers to the field and stimulate discussions in the community about addressing existing challenges. Our complementary perspective (http://dx.doi.org/10.1021/acs.analchem.9b05792) focuses on software tools available to help researchers tackle some of the challenges enumerated here
    corecore